ПATIIBIA UTIVERSITY OF SCIEПCE AПD TECHOOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES
DEPARTMENT OF HEALTH SCIENCES

QUALIFICATION : BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES BACHELOR OF HEALTH INFORMATION SYSTEMS MANAGEMENT BACHELOR OF BIOMEDICAL SCIENCES	
QUALIFICATION CODE: O8BEHS 07BHIS 50BBMS	LEVEL: 5
COURSE CODE: HSC511S	COURSE NAME: HEALTH SCIENCE CHEMISTRY
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Mr DAVID CARELSE
MODERATOR:	Dr MARIUS MUTORWA

INSTRUCTIONS

1. Answer ALL the questions in the answer book provided.
2. Write clearly and neatly.
3. Number the answers clearly.
4. All written work MUST be done in blue or black ink.

PERMISSIBLE MATERIALS

1. Scientific Calculator

THIS QUESTION PAPER CONSISTS OF 10 PAGES
(Including this front page, useful constants, and Periodic Table)

- There are 20 multiple choice questions in this section. Each question carries 3 marks.
- Answer ALL questions by selecting the letter of the correct answer.

1. Write the following number 0.000004013 using scientific notation.
A. 4.013×10^{-6}
B. 4.013
C. 4.013×10^{6}
D. 4.01×10^{7}
2. Do the following calculation and give the answer to the correct number of significant figures
A. 0.36 2.568×5.8
B. 3.6
C. 3.558
D. 0.6
3. How many grams does a $65-\mathrm{lb}$. bag of cement weigh?
A. 39545 g
B. 29545 g
C. 45445 g
D. 24745 g
4. A toddler with a fever has a temperature of $103^{\circ} \mathrm{F}$. What is this temperature reading in Celsius?
A. $39.4^{\circ} \mathrm{C}$
B. $37.1^{\circ} \mathrm{C}$
C. $42.7^{\circ} \mathrm{C}$
D. $35.3^{\circ} \mathrm{C}$
5. List the following ions in order of increasing ionic radius: $\mathrm{N}^{3-}, \mathrm{Na}^{+}, \mathrm{F}^{-}, \mathrm{Mg}^{2+}, \mathrm{O}^{2-}$
A. $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{F}^{-}, \mathrm{O}^{2-}, \mathrm{N}^{3-}$
B. $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{F}^{-}, \mathrm{O}^{2-}, \mathrm{N}^{3-}$
C. $\mathrm{F}, \mathrm{O}^{2-}, \mathrm{N}^{3-}, \mathrm{Mg}^{2+}, \mathrm{Na}^{+}$
D. $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}$
6. Identify the electron with the following quantum numbers:

$$
n=3 ; \ell=2 ; m \ell=1 ; m_{s}=-1 / 2
$$

A. $3 d^{8}$
B. $3 p^{9}$
C. $3 d^{9}$
D. $2 d^{9}$
7. Give the condensed electron configuration of the following element: K^{+}
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
B. $[\operatorname{Ar}] 4 s^{1}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
D. $[\mathrm{Ar}]$
8. Balance the following equation by providing the missing coefficients:

$$
\mathrm{Al}(\mathrm{OH}){3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow _\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}
$$

A. $1,3,1,2$
B. $2,3,2,6$
C. $2,3,1,6$
D. $2,6,1,3$
9. How many molecules are in 0.77 moles of a substance?
A. 8.3×10^{21} molecules
B. 4.1×10^{26} molecules
C. 3.8×10^{24} molecules
D. 4.6×10^{23} molecules
10. How many grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, are required to make 0.350 L of $0.500 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$?
A. $24.9 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$
B. $23.4 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $34.9 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$
D. $28.9 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$
11. Which of the following is the right combination of oxidation numbers for the following compound: $\mathrm{Mn}_{2} \mathrm{O}_{7}$?
A. $\mathrm{Mn}=+2, \mathrm{O}=+7$
B. $\mathrm{Mn}=+14, \mathrm{O}=-2$
C. $\mathrm{Mn}=+7, \mathrm{O}=-2$
D. $M n=+2, O=-7$
12. Which of the following are examples for colloidal systems in which the dispersed phase is solid and the dispersion phase is gas?
A. Smoke, dust
B. Fog, liquid sprays
C. Milk, mayonnaise
D. None of the above
13. What is the molality of a solution that contains 1208 g of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ in 1208 g of water?
A. $26.25 \mathrm{~m} \mathrm{CH}_{3} \mathrm{OH}$
B. $47.25 \mathrm{~m} \mathrm{CH}_{3} \mathrm{OH}$
C. $37.25 \mathrm{~m} \mathrm{CH}_{3} \mathrm{OH}$
D. $31.25 \mathrm{~m} \mathrm{CH}_{3} \mathrm{OH}^{\prime}$
14. From the following list select the elements that are metals:
I. Fe, II. S, III. Si, IV.Na, V. U, VI.Hg
A. II, III
B. I, III, IV, V,
C. I, IV, V, VI
D. III, IV, V
15. What is the freezing point of a solution that contains 8.50 g of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}, \mathrm{MW}=122\right)$ in 75.0 g of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$? $\left(\mathrm{f}_{\mathrm{p}}=5.48 ; \mathrm{k}_{\mathrm{f}}=5.12\right)$?
A. $0.72^{\circ} \mathrm{C}$
B. $4.76^{\circ} \mathrm{C}$
C. $2.34^{\circ} \mathrm{C}$
D. $1.76{ }^{\circ} \mathrm{C}$
16. What is the name of the following alkene according to the IUPAC rules?

A. 2-ethyl-4-bromo-But-2-ene
B. 5-bromo-3-methyl-pent-3-ene
C. 1-bromo-3-methyl-pent-2-ene
D. 5-bromo-hex-2-ene
17. If 0.00251 mol of NH_{3} effuse through a hole in 2.47 min , how much HCl would effuse in the same time?
A. 0.0017 Moles
B. 1.4643 Moles
C. 0.0251 Moles
D. 0.1701 Moles
18. A gas is least soluble in a liquid at:
A. low temperature and low pressure.
B. high temperature and high pressure.
C. high temperature and low pressure.
D. low temperature and high pressure.
19. From the following thermochemical equation, how much heat is created in $79.2 \mathrm{~g} \mathrm{O}_{2}$?

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}-890.4 \mathrm{~kJ}
$$

A. -1204 kJ
B. -2402 kJ
C. -1102 kJ
D. -2204 kJ
20. What is the osmotic pressure of a 0.01 M solution of glucose at $25^{\circ} \mathrm{C}$?
A. 185.7 mmHg
B. 255.3 mmHg
C. 278.1 mmHg
D. 145.4 mmHg

END OF SECTION A

SECTION B

- There are $\mathbf{7}$ questions in this section. Answer all Questions.
- Show clearly, where necessary, how you arrive at the answer as the working will carry marks too.

Question 1

An element consists of 1.40% of an isotope with mass $203.973 \mathrm{amu}, 24.10 \%$ of an isotope with mass $205.9745 \mathrm{amu}, 22.10 \%$ of an isotope with mass 206.9759 amu , and 52.40% of an isotope with mass 207.9766 amu. Calculate the average atomic mass and identify the element.

Question 2

Ethylene glycol, the substance used in the automobile antifreeze and recently vape cartridges for e-cigarettes, it is composed of $38.7 \% \mathrm{C}, 9.7 \% \mathrm{H}$, and $51.6 \% \mathrm{O}$ by mass. Its molar mass is $62.1 \mathrm{~g} / \mathrm{mol}$.
A. What is the empirical formula of ethylene glycol?
B. What is the molecular formula of ethylene glycol?

Question 3

In a process for producing silver, AgNO_{3} solution and copper are reacted in an electrochemical vessel producing $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ as a byproduct. The following equation represents the overall reaction.

$$
\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}
$$

In a laboratory test of this reaction, 20.0 g Cu and $10.0 \mathrm{~g} \mathrm{AgNO}_{3}$ were put into a reaction vessel.
A. How many grams of silver can be produced by this reaction from these amounts of reactants?
B. How many grams of the excess reactant remain after the reaction is complete?
C. If you obtain 5.70 g of silver from the experiment, what is the percentage yield of silver?

Question 4

The following equation under acidic conditions represents a redox process involved in a spectrophotometric determination of the permanganate ion. Balance the equation.

$$
\mathrm{MnO}_{4}^{-}+\mathrm{I}^{-} \rightarrow \mathrm{MnO}_{2}+\mathrm{I}_{2}
$$

Question 5

State seven (7) factors affecting the stability of colloids

Question 6

If 0.340 mol of a non-volatile non-electrolyte are dissolved in 3.00 mol of water, what is the vapor pressure of the resulting solution? (The vapor pressure of pure water is 23.8 torr at $25.0^{\circ} \mathrm{C}$.)
A. Calculate the mole fraction of the solvent
B. Calculate the vapor pressure

Question 7

Briefly describe the following terms?
A. Electron Affinity
B. Colligative property
C. Colloidal particle
D. Accuracy
E. Solubility

USEFUL CONSTANTS:

$$
\text { Gas constant, } \begin{aligned}
\mathrm{R} & =8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \\
& =0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \\
& =0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}
\end{aligned}
$$

$1.609 \mathrm{~km}=1 \mathrm{mile}$
$1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} \cdot \mathrm{L}=1 \mathrm{~N} . \mathrm{m}=1 \mathrm{~J}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr
Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$1 \mathrm{~kg}=2.2 \mathrm{lb}$
Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
1 mile $=5280 \mathrm{ft}$
Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$

1		Periodic Table of the Elements															18		
	2											13	14	15	16	17	$\underset{\substack{2 \\ \text { Hekem } \\ 4603}}{\mathrm{He}}$		
${ }^{3} \mathrm{Li}$												[${ }_{5}$ B	${ }^{6}$		$\underbrace{8}$	${ }_{\text {a }}$	(ion		
$\begin{aligned} & 11 \\ & \mathrm{Na} \\ & 2020 \\ & 22050 \end{aligned}$		3	4	5	6	7	8	9	10	11	12	$\mathrm{Al}_{\mathrm{Al}}^{13} \mathrm{Al}$			$\underset{\substack{\text { sen } \\ \text { Sece }}}{ }$				
${ }^{19} \mathrm{~K}$	${ }^{20}$		$\underset{\substack{\text { a }}}{22}$					$\xrightarrow{27}$		${ }^{29}$						c			
$\begin{aligned} & 37 \mathrm{Rb} \\ & \hline \end{aligned}$	$\left.\right\|_{888} ^{38} \mathrm{Sr}$	$\begin{aligned} & 39 \\ & \mathbf{r} \\ & \text { resise } \end{aligned}$			\|c	c			$\xrightarrow{\text { Ru }}$		${ }_{\substack{\text { a }}}^{46}$								
$\begin{gathered} { }_{5}^{55} \mathrm{Cl}_{5} \\ c_{12020} \end{gathered}$		55.71	${ }^{722} \mathrm{Hf}$				76	$\frac{\mathrm{lr}}{\substack{\text { rim } \\ i n 2 m}}$	${ }^{78} \mathrm{Pt}$	Au ${ }^{\text {cous }}$			$\begin{aligned} & 82 \mathrm{~Pb} \\ & \mathrm{Cos} \\ & \mathrm{xar2} \end{aligned}$	Bi $\underset{\substack{20250}}{ }$			(en		
$\begin{aligned} & 87 \\ & \mathrm{Fr} \\ & \text { mom } \\ & \text { misem } \end{aligned}$		${ }^{89-103}$			$\int_{106}^{106} \mathrm{~S}_{\mathrm{c}}$					$\begin{aligned} & 111 \\ & \mathrm{Rg} \\ & \hline \mathrm{Rm} \\ & \hline \end{aligned}$		Uut		$\begin{aligned} & 115 \\ & \text { Uup } \end{aligned}$	L_{10}^{166}	Uus	U8\%		

La	Ce	Pr	${ }^{60} \mathrm{Nd}$	Pm	Sm	${ }^{63} \mathrm{Eu}$	${ }^{04} \text { Gd }$	${ }_{\text {Tb }}$ Tb	$\int_{0}^{\infty} D_{y}$	${ }^{67}$	${ }_{\text {Er }}{ }^{\text {Erima }}$	Tm	Yb	u
139\%	\%115	10980	142	14%	1506		1525	1882	1220	1430	1696		1739	1848
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	${ }^{100}$	Md	No	Lr

